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Summary. The statistical mechanics of a ring polymer confined to a plane and
entangled with many randomly placed thin rods perpendicular to the plane are
considered. The entanglements are characterized by the Gauss linking number. If
the statistics of the random distribution of the rods is given by only the second
cumulant then it is shown that the resulting entanglement problem can be solved
formally exactly. For this special case the exact solution becomes possible
because the problem can be reduced to one involving the winding of the polymer
around one infinitely thin rod. The exact solution can be obtained for both the
annealed and the quenched random distribution of obstacles. The entanglement
of the ring polymer around the obstacles leads to a repulsive topological
potential which is an effective interaction between the polymer and the rods. The
origin of this potential is solely due to the constraint that the winding number be
conserved. It is shown that for R?*/L/ <! (R is the location of the polymer
segment, L is the total length of the polymer, and / is the length of the monomer)
the topological potential for the annealed random case goes as N In In(L//R?)
where N is the number of obstacles whereas for the quenched random case the
potential is given by C In L//R?, where C is a numerical constant that depends
on N.

Key words: Ring polymer — Entanglement of polymers — Polymer entanglement —
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1. Introduction

In 1967 Prager in collaboration with Frisch published a remarkable paper [1] on
the statistical mechanics of a simple entanglement in polymer systems. It had been
previously established that entanglements must be extremely important in the
description of gels, rubber, and other crosslinked systems [2]. Nowadays it is
suspected that effects of entanglements are relevant in the theory of the dynamics
of polymer solutions even in the infinite dilution limit [3]. However no microscopic
treatment of entanglement in polymeric systems has been possible because a
complete analysis of entanglement requires the incorporation of constraints
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imposed by the topological relationship between a pair of polymer molecules
into the statistical mechanics calculation [4, 5]. Strictly speaking the classifica-
tion of these constraints must involve the theory of knots [6], which is a subject
that is still being developed. Prager and Frisch recognized the difficulties associ-
ated with treating the statistical mechanics of entanglements. In order to
provide a simple illustration of the significance of topological entanglements
they used a simple analytical invariant, namely the Gauss invariant, to charac-
terize the different topological classes that results when the Gaussian chain
loops around the thin rod. In this case the winding number is conserved, and
the configurations having different winding numbers belong to distinct topolog-
ical classes. The statistical mechanics of the resulting problem, which involves
the incorporation of the constraint that the winding number be a constant, was
solved exactly by Prager and Frisch. These results were independently obtained
by Edwards [7] using path integral methods. These two papers were the first,
and perhaps the most instructive ones that showed how the results for a simple
system (a Gaussian chain) can be profoundly changed when the constraint is
taken into account. The most dramatic consequence of incorporating the con-
straint into the theory is that the system can support an application of stress
indefinitely, i.e., it behaves like an elastic system. The nature of the elastic
response for this simple system turns out to be extremely complex as was first
pointed out by Prager and Frisch. It is for this reason the treatment of
topological entanglements is believed to be relevant in dense polymeric systems
which invariably exhibit viscoelastic properties. The Prager—Frisch—Edwards
(PFE) model has been extended in a variety of interesting ways over the last
twenty-four years [5, 8—12].

In this paper the PFE model is generalized to -include the possibility of
entanglement of a phantom ring polymer confined to a plane (two dimensions)
in the presence of several randomly placed rods perpendicular to the plane. This
model was considered earlier by Tanaka [13] who provided an approximate
solution in the case when the randomness is annealed. Our solution to the
problem, which is very different from the one provided by Tanaka, follows more
closely the path integral approach introduced by Edwards [7, 14]. In particular
we show that if the statistics of the randomly placed obstacles is Gaussian
requiring only two moments to specify the statistics then the problem can be
mapped onto the entanglement of the ring polymer with a single rod. The latter
problem is precisely that solved by PFE, and the results obtained by these
authors can be profitably used. Although this mapping allows the problem to be
solved exactly the approximate variational estimate of the annealed free energy
obtained by Tanaka is quite useful.

The basic physics of the problem is easy to understand. The topological
constraint, namely that the winding number be a constant, leads to a consider-
able reduction in entropy. The reduction in entropy can be expressed as an
effective repulsive potential of mean force, and is referred to as the topological
potential. The reason this model is useful is because in dense polymer systems the
motion of a given polymer is impeded by constraints due to topological
entanglement with other polymer molecules. The simplest way of describing such
constraints, encountered for example in vulcanized materials [15], is by using the
Gauss invariant. In these systems if one is concerned with times less than the
typical creep times then the topological constraints due to the rods may be
analogous to the restrictions a typical polymer molecule encounters due to the
other polymer molecules.
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2. Annealed randomness

Consider a long polymer molecule confined to lie in a plane. In this paper the
excluded volume interactions between the monomer segments will be ignored
and, hence the polymer is a phantom chain. The effects of excluded volume on
the statistics of polymers with topological constraints will be treated separately
[16]. The configuration of the polymer molecule can be specified as a random
walk of step length /, which roughly corresponds to the Kuhn length. In the
continuum limit the probability that a polymer molecule at time 0 (the role of
time being played by the distance along the arc length of the polymer) is at R;
and at a later time L it is at R, is given by [4]:

HL)=R, 1 (L /dr\2
G(R,, L; Ry, 0) = D — | (%) 4
wrs0=| 7 (] (Z) ¢)

(L _Re—R)?
B <2an> °xp ( 7] ) ‘ )

Now suppose there is a nonselfentangled curve D in this space. For the
calculations reported in this paper this curve D is a line that results from the thin
rod placed perpendicular to the two dimensional plane. The question of interest
is the way in which topologically distinct sets are to be classified. In addition it
is of interest to calculate the probability of realization of these classes for a given
set of chain parameters. The simplest way to classify topological entanglement is
through the specification of the Gauss linking number, ie., [1, 4, 7]:

_ [ (r—s) xds
I—Ldr - L'——_(r_s)a @

where C is the curve specifying the polymer configuration. For our problem [
simply turns out to be the winding number:

L(dr
m= J; <%) - A(r(s)) ds 3)
where the vector field with zero divergence, A(r(s)), is given by:
y x
A(r(s)) = (—m , m) (4)

with r =(x, ), and m =0, +1, +2, etc. The winding number (which is the
topological constraint in the problem) can be written as:

L/do
- j (a) s 5)

g _ (xy — yx)
ds  x*+)? (6)

with

where the dot denotes a time derivative. Notice that the winding number can
have positive and negative integer values as well as zero. The above problem has
been solved by Prager and Frisch [1] and independently by Edwards [7]. The
exact solution to the problem can be used to calculate various properties of the
system [8].
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We now generalize the problem to the case where there are N rods that are
randomly placed. The rods are assumed to be needle like, i.e., the aspect ratio of
the rods is essentially infinite. A physical situation where this may be relevant is
in the description of a polymer molecule in a gel or rubber. The topological
constraint is assumed to arise from the cross links in the medium. Needless to
say that the problem we are considering is at best a caricature of the situation
that occurs in the more interesting physical systems. The various topologically
distinct classes are characterized by a set of winding numbers, m;,
i=1,2,...,N) where:

o dy . dx
T CCRAE SRECE Ak

" j <ds> ) j G-Ry+G-R) ¢
with P = (Pi, P}) being the position of the ith rod. The propagator of interest
can be written as:

G(R,, L; R,,0) =Jr(L)=R2 DIr(s)] exp (-% er'Z(s)> 1 5UL 6.(s) ds —m,-]

70)=R, i=1 0
(8)

where N is the number of obstacles. Notice the constraint is imposed by the delta
function in the path integral. The delta function in Eq. (9) is to be interpreted as
the Kronecker delta function whose integral representation is given by:

0

—Tn

S(m) = f " %ei"m. )

The integral representation of the delta function given in Eq. (9) can be used to
write Eq. (8) as:
1 L N L
- Fsyds + Y, i dsA[r(s) — P;]- #(s)]
AT

G(R,,L;R;,0)= fﬂ Z—};e“”"f fD[r(s)] e i=1 %0 (10)

1

where the vector field, A(r(s) — P;), is about the location of the ith rod. We first
consider the case of annealed randomness in which the randomly placed obsta-
cles are in equilibrium with the polymer molecule. By annealed we mean that the
rods are allowed to equilibrate among themselves on time scales in which the
internal degrees of freedom of the polymer molecule relax. In contrast if the time
scales for equilibration of the obstacles are much longer than the polymer
relaxation times then one is faced with the case of quenched randomness. The
latter problem is treated in the following section. In both cases it is assumed that
the configurations of the polymer are at equilibrium. For the case of annealed
randomness the physical quantities of interest should be calculated by averaging
over the distribution of the randomly placed rods. The distribution function
describing the location of the rods is assumed to be proportional to 1/S where S
is the area of the plane. This assumption about the distribution function implies
that there is no correlation between the rods. The averaging over the distribution
of the rods can be represented in terms of the usual cumulant expansion [17]:

<exp i ik, jL dsA[r(s) — R;] - r'(s)> ~ exp(—3C,r4,) (11)

i=1 0
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where
MAy= 3 22 (12)
and ‘
L L
C,= JdP j ds J ds'[F(s) - A(F(s) — P)[[F(s’) - A(r(s") — P)]. (13)
0 0
Notice the expansion in Eq. (11) has been truncated at the second cumulant, the

first one being zero. Thus the propagator averaged over the random distribution
of rods is:

D,
(G(Ry, L; Ry, 0)) = Hﬂe’m“"'Qm(Rz,L;R.,O) (14)

o 1

where {---> denotes averaging over the distribution of obstacles and:

HL) =Ry T/ 1 (L L
O = j Dir(s)] exp (-* J F3(s) ds — 4, Ja’P f ds
0) =R, | I'Jo 0

X J; ds’(F(s) - A(r(s) — P)(F(s") - A(r(s”) — P)))]. (15)

If the transformation r(s) — #(s) — P is made then the following identity:

x2 ‘_a_2
J X T3 (16)

=

can be used to write Eq. (15) as:

O = f pz j 7 Dl exp[—” #6) ds + izf j " asi6) -A(r(s))], an

(0)=R;
/12 172
ﬂ=<7> , (18)

where

and

DZ =

dz. 19
T (19)
In obtaining Eq. (17) we have made use of the fact that Oy should be independent
of P due to translational invariance. The path integral in Eq. (17) is precisely that
associated with the entanglement around an isolated rod and can be calculated
either by using the equivalent Schrodinger equation [7] or by using a discretized
path representation of Qp; [18]. This is exactly soluble and one obtains:

n= + o 1
O = f DZ Y exp(in(8" - 6") (n—u)

= —a0

R%24+ R? 2R, R
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where I (x) is the modified Bessel function. In obtaining Eq. (20) the use of
translational invariance of Q has been made. Using Eq. (20) the free energy of
the entangled polymer system may be obtained using the relation:

F, kg T = —1nJ<G(R,L;R, 0)> dR (21)

where kg is the Boltzmann constant and T is the temperature. In Eq. (21) R
is the location of the end points which for the case of ring polymer specifies
the position of an arbitrary monomer. This completes the formal solution to
the problem of calculation of the free energy of an entangled ring polymer
in the annealed random case. The propagator and the free energy, F,, can then
be used to calculate the correlation functions, elastic constants, and osmotic
pressure.

Although the formal solution to the problem is complete the analytic
evaluation of the integrals that occur in the expression for the free energy proves
to be formidable. Thus we present an approximate evaluation of certain quanti-
ties of interest namely the topological potential and the resulting topological
force or equivalently the elastic force.

The topological force can be calculated from the propagator for the ring
polymer which is given by:

i g (1
(G(R, L; R, 0)>=fﬂ?7;’emfmf fDZ Y (El)

n= —ac

2R? 2R?
X €Xp <—-'E~) [|n—l32| <‘fl—> . (22)

For small values of R such that x = 2R?/LI < 1 the modified Bessel function may
be written as [19]:

Iy
Ly (%) =~ (g) r~'(ln—pz{+1) (23)

where y =(n — fz). Since x is small the maximum contribution to Eq. (23)
comes from y ~ 0, and in this limit I' ~!(¥ + 1) may be replaced by unity [20].
By the same reasoning it is also easy to show that the maximum contribution to
the summation over the index » comes from n = 0. With these approximations
the probability of finding the random distribution of the rods, P,(R) =
{G(R, L; R, 0)>, becomes:

eXp _ <31i2> + __N_mi_
0 m(z)]
PR ~ NG , (24)
[‘“ (ﬁﬂ

where m? is the mean square degree of entanglement per rod:

m2=l sz: m?. (25
NS
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From Eq. (24) the probability that the ring polymer has zero value for the mean
square degree of entanglement per rod, i.e., m? = zero is given by:

e LI

PY(R) ~ I\
()]

which coincides with the result for entanglement with one obstacle [21] when N
is unity [22]. The result given in Eq. (26) is not very surprising. Since there is no
correlation between the rods we expect that P%(R) should roughly be given by
PY(R) where Py(R) is the probability of no entanglement when just one rod is
present. A topological free energy for the annealed random case can be defined
as

(26)

F
R @)
B
and using Eq. (24) we get:
F,(R) Nm? LI
~— = 2
ky T s R_2 >+ Nlnln e (28)
Ll

where kg is the Boltzmann constant, and T is the temperature. The topological
force (or disjoining pressure) is given by —JF,(R)/0R and using Eq. (28) we
obtain:

R IN INm? R?
~ f h—— . 2
S~ +Rl VT (L or (77 ) <1 (29)
BV "/ ™R

This purely repulsive force can be thought of as a potential of mean force
experienced by a segment located at R, and is purely topological in nature. It
arises because the distinct topological classes have a certain constraint. In our
case the constraint is expressed by requiring that the winding number be fixed.
When the averaging over the random distribution of obstacles is done the
topological classes are distinguished by the different values of m?. Notice that
this force diverges strongly as R tends to zero. From Eq. (24) it is also clear that
the elastic response (which can be studied by imposing an external field and
calculating the response of the system to this field) can be extremely complicated
as was first shown by Prager and Frisch for the case of winding of a polymer
molecule around one obstacle.

3. Quenched randomness

If the obstacles, namely the rods that are placed perpendicular to the plane, are
treated as quenched random impurities then one has to average the free energy
over the random distribution of obstacles. This is to be contrasted with the case
of annealed randomness treated earlier in which the propagator G(R, L; R, 0) (or
equivalently the partition function) was averaged over the random distribution
of rods. The quenched random average can be calculated using the replica trick
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which was introduced by Edwards in the treatment of rubber elasticity [23]. In
general the treatment of problems involving quenched randomness is exiremely
difficult. However we will show that for the problem considered earlier the
formal calculation of the quenched random free energy is (at least formally)
surprisingly simple.

The reason for considering the case in which the obstacles are treated as
quenched random impurities in modelling entanglements is the following. In
gels or in systems where the molecules are permanently crosslinked with one
another (like elastic networks) the precise topological relationship between
polymer segments belonging to different chains act as constraints [15]. In this
paper these constraints are modelled by insisting that the winding numbers be
constant. Thus for a particular realization of the sample one has to specify the
location of the rods, and the associated probability of realizing such a configu-
ration. The control parameter in our case is the position of rods and for a
given realization of the obstacles the chain topology is specified by a set of N
winding numbers. If the time scale for changes in the position of the rods (this
may correspond to creep times of the network) is much longer than the
relaxation time for the internal degrees of freedom of the ring polymer then one
is lead to the computation of free energy for a given realization of the obsta-
cles. The quenched free energy is obtained by averaging the free energy for a
given set of {R;} over the random distribution of obstacles. The separation in
time scale given above is often met in gels, rubbers [15] spin glasses [24], and
other systems. In our case the quantity of interest is {In G(R, L; R, 0)) from
which the quenched topological potential, F,(R), for the ring polymer case can
be computed using:

Fo(R) _
ks T

= —{nG(R, L; R, 0)). (30)

By using the replica trick [23, 24] the average of logarithm of the propagator
can be written as:

(31

{dnG(R,, L; R,,0)) = lirr%) [((G"(Rz, L;an, 0)>— 1):| '

By following the procedure outlined in the previous section (G*(R, L; R, 0)>
can be written as:
d {2,} ei).'}.jmj

Loy (32)

<Gn(R25 L, Rla 0)> = J‘
where d{A} =[] dA; and:

Q> = jDZ ﬁ[l Dlr ()] exp ). l:—% L ra(syds +ifz L r.(5) - A(r, () ds:|

= fDZK". (33)

The path integral in K is precisely the quantity that occurs when the polymer is
entangled with one rod, and the result is explicitly given by Eq. (20). The
quantity of interest in Eq. (30) can be obtained using Egs. (31) and (32), and for
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the case of ring polymers the explicit result for the quenched topological
potential is given by:

Fy(R) d{i} .
_kB—T— = _f = exp (z ;ijmj) JDZ In Q2 (34)

n=o /) 2R 2R?
— - 7] ikl
2= X (nLl>e I'"‘M(Ll)' (33)

This once again formally solves the problem of the calculation of the quenched
free energy for our model of entanglement.

The explicit computation of F,(R) for a given set of system parameters (L,
N, and mean entanglement index per rod) is not possible and thus Eq. (34) has
to be evaluated numerically. However some insight may be obtained by comput-
ing F,(R) for small values of R?/Ll. By using the approximations given in Egs.
(23) the topological potential F,(R) corresponding to the probability that the
phantom ring polymer has zero mean square degree of entanglement per rod is

given by:
F3(R) L] R?
———~Chn|=— — <1

ks T ¢ln 2R? for Ll < (36)

where C is a numerical constant that depends on N. It is interesting to compare
this result with the topological potential F,(R) for the annealed random case
which can be obtained by setting m?=0 in Eq. (28). The potential F,(R) is
considerably more repulsive than F,(R). This result is general, ie., the free
energy for the quenched random case is always higher than the corresponding
case of annealed randomness. This follows from the entropy reduction that
results because the obstacles are treated as quenched random impurities. One can
in principle use Eq. (34) in the expression for the free energy of polymer
networks to calculate corrections (Mooney—Rivlin terms) to the classical theory
of high elasticity of polymer networks. This may be useful especially in light of
the work of Nechaev and Khokhlov [25] who suggested that the entanglement
restrictions of a large number of obstacles is necessary to obtain significant
corrections to the classical theory of elasticity.

where

4. Conclusions

In this paper we have generalized the PFE model to assess the effect of both
annealed and quenched randomness on the statistical mechanics of simple
entanglement. It can be argued that the presence of many randomly placed rods
with which the chain can become entangled is a better caricature of the physics
in physically interesting systems. We have shown that as long as the statistics of
the randomly placed uncorrelated rods is adequately described by a Gaussian
process both the annealed random problem as well as the quenched random
problem can be formally exactly solved. Our major result is that for small values
of the argument RZ?/LI one obtains a repulsive topological potential arising
merely from the constraint that the winding number be conserved. The topolog-
ical potential for the situation that the polymer has zero mean square entangle-
ment per rod is found to be considerably more repulsive for the quenched
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random case than for the annealed random problem. Explicitly we have ob-
tained:

Li
F(R) Cln <F> (quenched)

kg T Ll (37)

Nlnln (—R—z) (annealed)

where C is a N-dependent constant. The above equation for the repulsive elastic

force on the ring polymer confined to a plane due to entanglement with the
obstacles is our principle result.

In a certain sense the results of the present excercise are somewhat dissap-
pointing. It has been transparent already from the studies of Prager, Frisch, and
Edwards that F(R) for entanglements with one obstacle has basically (apart from
the factor of N) the structure that we have obtained for the annealed random
problem. The second important point Prager and Frisch made was that the
simple Gauss invariant constraint can make the phantom ring polymer behave
like a system having a very complicated elastic response. Both these lessons are
reaffirmed in our present analysis. It is also unlikely that the more realistic
modelling of entanglement attempted here will be useful in providing a better
understanding of the experimental situation of elasticity in networks. Perhaps the
most interesting result of the present work is the demonstration that the case of
quenched randomness can be formally exactly solved. It also appears that there
is no evidence for replica symmetry breaking in this model which has only short
range interactions. Furthermore the explicit calculation of the topological poten-
tial shows that in the limit of small values of (R%/LI) the potential for the
quenched random case is considerably more repulsive than the potential for the
annealed case.
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